来自 产品展示 2019-12-09 12:07 的文章

什么是机器学习?

  深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。学习的话可以加裙前面六九式中间二六九最后加上五四零就可以进来学习了奥,不定期还会有资料推送,还有人工智能领域大牛在线解答问题。

  深度学习的概念由hinton等人于2006年提出。基于深信度网(dbn)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

  深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

  同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(convolutional neural networks,简称cnns)就是一种深度的监督学习下的机器学习模型,而深度置信网(deep belief nets,简称dbns)就是一种无监督学习下的机器学习模型。

  在许多情形中深度2就足够表示任何一个带有给定目标精度的函数。但是其代价是:图中所需要的节点数(比如计算和参数数量)可能变的非常大。理论结果证实那些事实上所需要的节点数随着输入的大小指数增长的函数族是存在的。

  我们可以将深度架构看做一种因子分解。大部分随机选择的函数不能被有效地表示,无论是用深的或者浅的架构。但是许多能够有效地被深度架构表示的却不能被用浅的架构高效表示。一个紧的和深度的表示的存在意味着在潜在的可被表示的函数中存在某种结构。如果不存在任何结构,那将不可能很好地泛化。

  例如,视觉皮质得到了很好的研究,并显示出一系列的区域,在每一个这种区域中包含一个输入的表示和从一个到另一个的信号流(这里忽略了在一些层次并行路径上的关联,因此更复杂)。这个特征层次的每一层表示在一个不同的抽象层上的输入,并在层次的更上层有着更多的抽象特征,他们根据低层特征定义。

  需要注意的是大脑中的表示是在中间紧密分布并且纯局部:他们是稀疏的:1%的神经元是同时活动的。给定大量的神经元,仍然有一个非常高效地(指数级高效)表示。

  学习/发现这些概念(知识工程由于没有反省而失败?)是很美好的。对语言可表达的概念的反省也建议我们一个稀疏的表示:仅所有可能单词/概念中的一个小的部分是可被应用到一个特别的输入(一个视觉场景)。

  机器学习通过从数据里提取规则或模式来把数据转换成信息。主要的方法有归纳学习法和分析学习法。数据首先被预处理,形成特征,然后根据特征创建某种模型。机器学习算法分析收集到的数据,分配权重、阈值和其他参数达到学习目的。如果只想把数据分成不同的类,那么“聚类”算法就够了;如果需要预测,则需要一个“分类”算法。OpenCV库里面包含的是基于概率统计的机器学习方法,贝叶斯网络、马尔科夫随机场、图模型等较新的算法还在成长过程中,所以OpenCV还没有收录。 机器学习的算法有很多很多:1、Mahalanobis 2、K-means 非监督的聚类方法3、朴素贝叶斯分类器 特征是高斯分布&&统计上相互独立 条件比较苛刻4、决策数 判别分类器,根据阈值分类数据,速度快。ID3,C4.5 5、Boosting 多个判别子分类器的组合6、随机森林 由多个决策树组成7、人脸检测/Haar分类器 使用Boosting算法8、期望最大化EM 用于聚类的非监督生成算法 9、K-近邻 最简单的分类器10、神经网络(多层感知器) 训练分类器很慢,但是识别很快11、支持向量机 SVM 可以分类,也可以回归。通过分类超平面实现在高维空间里的最优分类 12、遗传算法 借鉴生物遗传机制 ,随机化非线性计算算法总之呢,个人觉得,机器学习、数据挖掘、模式识别、专家系统等方向和领域目前还是一种比较混乱的局面。学术界和商业界可能是不同的,关于算法的理论研究和使用这些方法生成商品是分别关注的。按照不同的领域、不同的方法可以划分出众多的分支。但是有一点是肯定的,这些在上世纪80年代提出来的公式和证明,如今正在变成一行行的代码,在一些猫(tomcat)、IIS等服务器的支持下,爬上了网络,到处寻觅对主人有用的信息,然后运送到网络中,最终生成产品,或者半产品。看看你电脑上的那根网线,它那么小,但是很难想象它从你的电脑上拿走了什么,又给你送来了什么。有些远了,继续说数据这些事。目前我接触过的算法有:(太多了,一时间真不好说出来) 神经网络(感知器、BP、RBF等很多的算法),遗传算法,支持向量机,层次分析法,各种回归,灰色系统(国产的方法,用于不确定知识的预测),粗糙集,贝叶斯网络,时间序列分析(也有很多)。学习和研究纸面的算法公式只是第一步,不可以忽略的基础,如何使用这些方法,在浩瀚的互联网上找到自己需要的、满足客户需要的数据和信息,从而让需要的人能够更加方便地得到,是今后的重头戏了。貌似很多的企业已经进军数据仓库这一块,并尝到了巨大的甜头,也有企业养着一队预备军,专注研发,随时准备奔赴前线,占领市场。无线网络市场的竞争已经到了激烈的局面,普适计算的时代也快到了吧。它依赖于硬件产品的可穿戴,和软件产品的内嵌、快速响应。总而言之,越来越人性化,谁都不愿意抱着笔记本电脑蹲厕所,是吧?

  机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

  它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

  机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。

  机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。

  尽管如此,为了便于进行讨论和估计学科的进展,有必要对机器学习给出定义,即使这种定义是不完全的和不充分的。顾名思义, 机器学习是研究如何使用机器来模拟人类学习活动的一门学科。稍为严格的提法是:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。这里所说的“机器”,指的就是计算机;现在是电子计算机,以后还可能是中子计算机、光子计算机或神经计算机等等。

  机器能否象人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对弈中改善自己的棋艺。4年后,这个程序战胜了设计者本人。又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。

  机器的能力是否能超过人的,很多持否定意见的人的一个主要论据是:机器是人造的,其性能和动作完全是由设计者规定的,因此无论如何其能力也不会超过设计者本人。这种意见对不具备学习能力的机器来说的确是对的,可是对具备学习能力的机器就值得考虑了,因为这种机器的能力在应用中不断地提高,过一段时间之后,设计者本人也不知它的能力到了何种水平。

  机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。

  (1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。

  (2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。

  (3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。

  (4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。

  (5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。

  成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。公司由来自华为、京东、星环、勤智等国内知名企业的多位技术大牛联合创办。面向社会提供大数据、人工智能等前沿技术的培训业务。

  机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。简单说就是运用集成运算单元根据人类大脑的学习方式,进行模拟学习的一类学科。

  近20年,机器学习带来了自动驾驶汽车、实用的语音识别、高效的网络搜索,让我们对人类基因的解读能力大大提高,如今机器学习技术已经非常普遍。